Complexity of near-optimal robust versions of multilevel optimization problems

نویسندگان

چکیده

Abstract Near-optimality robustness extends multilevel optimization with a limited deviation of lower level from its optimal solution, anticipated by higher levels. We analyze the complexity near-optimal robust problems, where is modelled through additional adversarial decision-makers. Near-optimal versions problems are shown to remain in same class as problem without near-optimality under general conditions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing

بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...

15 صفحه اول

Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization

We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific, asymptotically optimal set. This asymptotically optimal set is provably the sm...

متن کامل

Near-Optimal Ambiguity Sets for Distributionally Robust Optimization

We propose a novel, Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO). The key idea is to measure the relative size between a candidate ambiguity set and an asymptotically optimal set as the amount of data grows large. This asymptotically optimal set is provably the smallest convex ambiguity set that satisfies a s...

متن کامل

Complexity of the Min-Max (Regret) Versions of Cut Problems

This paper investigates the complexity of the min-max and min-max regret versions of the s− t min cut and min cut problems. Even if the underlying problems are closely related and both polynomial, we show that the complexity of their min-max and min-max regret versions, for a constant number of scenarios, are quite contrasted since they are respectively strongly NP-hard and polynomial. Thus, we...

متن کامل

Computing near-optimal solutions to combinatorial optimization problems

In the past few years, there has been signiicant progress in our understanding of the extent to which near-optimal solutions can be ee-ciently computed for NP-hard combinatorial optimization problems. This paper surveys these recent developments, while concentrating on the advances made in the design and analysis of approximation algorithms, and in particular, on those results that rely on line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization Letters

سال: 2021

ISSN: ['1862-4480', '1862-4472']

DOI: https://doi.org/10.1007/s11590-021-01754-9